The Miracle of Applied Mathematics 1. the Unreasonable Effectiveness of Mathematics
نویسندگان
چکیده
Mathematics has a great variety of applications in the physical sciences. This simple, undeniable fact, however, gives rise to an interesting philosophical problem: why should physical scientists find that they are unable to even state their theories without the resources of abstract mathematical theories? Moreover, the formulation of physical theories in the language of mathematics often leads to new physical predictions which were quite unexpected on purely physical grounds. It is thought by some that the puzzles the applications of mathematics present are artefacts of out-dated philosophical theories about the nature of mathematics. In this paper I argue that this is not so. I outline two contemporary philosophical accounts of mathematics that pay a great deal of attention to the applicability of mathematics and show that even these leave a large part of the puzzles in question unexplained. 1. THE UNREASONABLE EFFECTIVENESS OF MATHEMATICS The physicist Eugene Wigner once remarked that [t]he miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve. (Wigner 1960, 14) Steven Weinberg is another physicist who finds the applicability of mathematics puzzling: It is very strange that mathematicians are led by their sense of mathematical beauty to develop formal structures that physicists only later find useful, even where the mathematician had no such goal in mind. [ . . . ] Physicists generally find the ability of mathematicians to anticipate the mathematics needed in the theories of physics quite uncanny. It is as if Neil Armstrong in 1969 when he first set foot on the surface of the moon had found in the lunar dust the footsteps of Jules Verne. (Weinberg 1993, 125) Mark Steiner also believes that there is a problem here worthy of attention: [H]ow does the mathematician – closer to the artist than the explorer – by turning away from nature, arrive at its most appropriate descriptions? (Steiner 1995, 154) Indeed, this puzzle,1 which Wigner calls “the unreasonable effectiveness of mathematics”, is often remarked upon by physicists and applied Synthese 127: 265–277, 2001. © 2001 Kluwer Academic Publishers. Printed in the Netherlands.
منابع مشابه
Revisiting the ‘unreasonable effectiveness’ of mathematics
Although the phrase ‘unreasonable effectiveness of mathematics’ is widely used, it is not clear what it means. To understand this phrase critically, we first need to understand the meaning of mathematics and what it means to use it in the sciences. This paper begins by considering the different views on the nature of mathematics, the diversity of which points to the difficulty in understanding ...
متن کاملA Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation
Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...
متن کاملDynamic Response Analysis of Fractionally Damped Beams Subjected to External Loads using Homotopy Analysis Method
This paper examines the solution of a damped beam equation whose damping characteristics are well-defined by the fractional derivative (FD). Homotopy Analysis Method (HAM) is applied for calculating the dynamic response (DR). Unit step and unit impulse functions are deliberated for this analysis. Acquired results are illustrated to show the movement of the beam under various sets of parameters ...
متن کاملEstimation of portfolio efficient frontier by different measures of risk via DEA
In this paper, linear Data Envelopment Analysis models are used to estimate Markowitz efficient frontier. Conventional DEA models assume non-negative values for inputs and outputs. however, variance is the only variable in these models that takes non-negative values. Therefore, negative data models which the risk of the assets had been used as an input and expected return was the output are uti...
متن کاملA method based on the meshless approach for singularly perturbed differential-difference equations with Boundary layers
In this paper, an effective procedure based on coordinate stretching and radial basis functions (RBFs) collocation method is applied to solve singularly perturbed differential-difference equations with layer behavior. It is well known that if the boundary layer is very small, for good resolution of the numerical solution at least one of the collocation points must lie in the boundary layer. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001